Google DeepMind Ushers in New Era for Google Maps using Inverse Reinforcement Learning to Sharpen Route Recommendations

Google DeepMind Ushers in New Era for Google Maps using Inverse Reinforcement Learning to Sharpen Route Recommendations

Google DeepMind Ushers in New Era for Google Maps using Inverse Reinforcement Learning to Sharpen Route Recommendations

As Seen On

Routing lies at the heart of Google Maps, an intricate process that takes into consideration numerous factors such as toll fees, surface conditions, estimated time of arrival (ETA), and user preferences. The refinement of route recommendations amidst these complex factors requires advanced technology. Enter Inverse Reinforcement Learning (IRL), a form of machine learning that links AI with observed sequential decision-making behavior.

The objective of IRL is to interpret the preferences of agents based on their actions, which in the context of Google Maps refers to deducing users’ travel patterns. However, the size and complexity of the underlying Markov Decision Processes (MDPs) used to model these decisions pose a significant challenge for scaling IRL algorithms. Such models consider varied aspects of the user experience, from preferred travel durations to types of terrain, all of which present their own multitude of options and endpoints.

A collaboration among Google Research, Google Maps, and Google DeepMind has heralded a breakthrough in this regard: the introduction of a “Massively Scalable Inverse Reinforcement Learning” program for Google Maps. This initiative makes use of significant technological advancements such as graph compression, helping to manage large-scale data by determining the most crucial nodes in the decision-making process, and parallelization, which allows concurrent processing of multiple computations or processes.

Central to this initiative is a new IRL algorithm: Receding Horizon Inverse Planning (RHIP). RHIP has demonstrated a significant leap in the algorithm’s performance and scalability while offering substantial control over trade-offs such as planning horizon depth and grid resolution. These factors play a critical role in improving the route match rate, demonstrating the effectiveness and efficiency of the AI’s decision-making process.

The implementation of RHIP has resulted in a notable improvement in the route match rate. In trials, the route suggestions based on RHIP were more frequently chosen by users, demonstrating the algorithm’s ability to understand and replicate successful decision-making processes.

The benefits of using IRL extend beyond just higher match rates. IRL is ideal for goal-conditioned problems, such as determining optimal routing, where specific output scenarios (in this case, the best routes) are required. Notably, the learned reward function – the mapping of states towards preferred decisions – can be transferred across different Markov Decision Processes, making it versatile in various routing scenarios.

In light of these advancements, those interested in cutting-edge technology are encouraged to delve deeper into reinforcement learning. To stay abreast of the latest developments, follow Google Research and DeepMind projects, as these entities continue to push the boundaries of what AI and machine learning can achieve.

As we move forward, it’s evident that initiatives like Google DeepMind’s use of IRL in Google Maps are paving the way for a new era of technologically-driven solutions. This could potentially revolutionize the entire navigation industry and further add value to user experiences around the globe.

Casey Jones Avatar
Casey Jones
5 months ago

Why Us?

  • Award-Winning Results

  • Team of 11+ Experts

  • 10,000+ Page #1 Rankings on Google

  • Dedicated to SMBs

  • $175,000,000 in Reported Client

Contact Us

Up until working with Casey, we had only had poor to mediocre experiences outsourcing work to agencies. Casey & the team at CJ&CO are the exception to the rule.

Communication was beyond great, his understanding of our vision was phenomenal, and instead of needing babysitting like the other agencies we worked with, he was not only completely dependable but also gave us sound suggestions on how to get better results, at the risk of us not needing him for the initial job we requested (absolute gem).

This has truly been the first time we worked with someone outside of our business that quickly grasped our vision, and that I could completely forget about and would still deliver above expectations.

I honestly can't wait to work in many more projects together!

Contact Us


*The information this blog provides is for general informational purposes only and is not intended as financial or professional advice. The information may not reflect current developments and may be changed or updated without notice. Any opinions expressed on this blog are the author’s own and do not necessarily reflect the views of the author’s employer or any other organization. You should not act or rely on any information contained in this blog without first seeking the advice of a professional. No representation or warranty, express or implied, is made as to the accuracy or completeness of the information contained in this blog. The author and affiliated parties assume no liability for any errors or omissions.